More on coupling coefficients for the most degenerate representations of $S O(n)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 324249
(http://iopscience.iop.org/0305-4470/32/23/305)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:33

Please note that terms and conditions apply.

More on coupling coefficients for the most degenerate representations of $S O(n)$

Markus Hormeß and Georg Junker
Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058
Erlangen, Germany
E-mail: hormess@theorie1.physik.uni-erlangen.de and
junker@theorie1.physik.uni-erlangen.de

Received 19 March 1999

Abstract

We present explicit closed-form expressions for the general group-theoretical factor appearing in the α-topology of a high-temperature expansion of $S O(n)$-symmetric lattice models. This object, which is closely related to $6 j$-symbols for the most degenerate representation of $S O(n)$, is discussed in detail.

1. Introduction

In this paper we extend our previous studies [1] on coupling coefficients for the so-called most degenerate (also called symmetric or class-one) representations of $S O(n)$. These coupling coefficients are important in many fields of theoretical physics such as atomic and nuclear physics. For example, in connection with the Jahn-Teller effect an extensive study of particular $6 j$-symbols is due to Judd and co-workers [2]. A detailed study of isoscalar factors of $S O(n) \supset S O(n-1)$ and related $6 j$-coefficients has been made by Ališauskas [3], showing that the $6 j$-coefficients of $S O(n)$ can be expressed in terms of (generalized) $6 j$-coefficients of $S U(2)$.

Coupling coefficients of the most degenerate representations of $S O(n)$ also appear as group-theoretical factors in the high-temperature expansion of $S O(n)$-symmetric classical lattice models $[4,5]$ such as the $X Y$-model $(n=2)$ and the Heisenberg model $(n=3)$. In this paper we present new explicit results for the so-called α-graph, which contributes with the following group-theoretical factor to the high-temperature expansion of the free energy of such models [1, 4, 5]:

$$
\begin{align*}
I_{n} \equiv & I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right) \\
:= & \int_{S O(n)} \mathrm{d} g_{1} \int_{S O(n)} \mathrm{d} g_{2} \int_{S O(n)} \mathrm{d} g_{3} \mathcal{D}_{00}^{\ell_{1}}\left(g_{1}\right) \mathcal{D}_{00}^{\ell_{2}}\left(g_{2}\right) \mathcal{D}_{00}^{\ell_{3}}\left(g_{3}\right) \mathcal{D}_{00}^{\ell_{4}}\left(g_{2}^{-1} g_{3}\right) \\
& \times \mathcal{D}_{00}^{\ell_{5}}\left(g_{3}^{-1} g_{1}\right) \mathcal{D}_{00}^{\ell_{6}}\left(g_{1}^{-1} g_{2}\right) \tag{1}
\end{align*}
$$

Here $\mathcal{D}_{00}^{\ell}(g)$ denotes a particular matrix element (the zonal spherical function) of the ℓ th unitary irreducible class-one representation of $S O(n), \ell \in \mathbb{N}_{0}$, and $\mathrm{d} g$ is the normalized invariant Haar measure on $S O(n)$. For details we refer to our earlier work [1]. Here we only note the relation
of the above integral with the $6 j$-symbols of $S O(n)$:

$$
\begin{align*}
& I_{n}=(-1)^{\ell_{4}+\ell_{5}+\ell_{6}}\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
0 & 0 & 0
\end{array}\right)_{(n)}\left(\begin{array}{ccc}
\ell_{1} & \ell_{5} & \ell_{6} \\
0 & 0 & 0
\end{array}\right)_{(n)}\left(\begin{array}{ccc}
\ell_{4} & \ell_{2} & \ell_{6} \\
0 & 0 & 0
\end{array}\right)_{(n)} \\
& \times\left(\begin{array}{ccc}
\ell_{3} & \ell_{4} & \ell_{5} \\
0 & 0 & 0
\end{array}\right)_{(n)}\left\{\begin{array}{lll}
\ell_{1} & \ell_{2} & \ell_{3} \\
\ell_{4} & \ell_{5} & \ell_{6}
\end{array}\right\}_{(n)} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& \left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
0 & 0 & 0
\end{array}\right)_{(n)}^{2}:=\int_{S O(n)} \mathrm{d} g \mathcal{D}_{00}^{\ell_{1}}(g) \mathcal{D}_{00}^{\ell_{2}}(g) \mathcal{D}_{00}^{\ell_{3}}(g) \\
& \quad=\frac{(J+n-3)!}{(n-3)!\Gamma^{2}(n / 2) \Gamma(J+n / 2)} \prod_{i=1}^{3}\left[\frac{(n-2)!\ell_{i}!\Gamma\left(J-\ell_{i}+(n-2) / 2\right)}{2\left(\ell_{i}+n-3\right)!\left(J-\ell_{i}\right)!}\right] \tag{3}
\end{align*}
$$

denotes the square of a $3 j$-symbol, which vanishes unless $J:=\left(\ell_{1}+\ell_{2}+\ell_{3}\right) / 2$ is a non-negative integer, $J \in \mathbb{N}_{0}$, and the ℓ 's obey the triangular relation well known from the case $n=3$. This result, in essence, goes back to an earlier one of Vilenkin [6] (equation (6), p 490; see also the work of Ališauskas [7] and references therein). A derivation of (3) can be found in [1], equations (21)-(24), where a phase convention for the $3 j$-symbol is also given. This together with an explicit expression for I_{n} then leads to a closed-form expression for the $6 j$-symbol, which is denoted with curly brackets in (2). The resulting expressions are indeed similar to those obtained by Ališauskas [3].

The purpose of this paper is to derive a rather elementary expression for the above group integral $I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$ which allows us to present, for given but arbitrary values of the ℓ 's and any n, explicit results for (1). So far only particular results have been given in the literature. For example, for arbitrary n and $\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}, \ell_{5}, \ell_{6}\right)=(1,1,2,1,1,2)$ an explicit expression has been given by Domb [5], the elementary case $\ell_{4}=0$ can be found in [1] \dagger and, rather recently, some results have been given for the cases where one of the ℓ 's equals one or two [9].

The remaining part of this paper deals with the derivation of an elementary expression for I_{n}, which is given below in (10) in combination with (6), (14) and (15). Together with the above expression for the $3 j$-symbol we have thus also obtained a new elementary expression for the corresponding $6 j$-symbol. We finally present some explicit results for arbitrary n and $\ell_{i} \in\{1,2,3,4\}$ after briefly discussing the symmetry properties of I_{n}. Our result will also be compared with that of Ališauskas [3].

2. Explicit integration of (1)

In this section we will make extensive use of our previous results [1]. In the following if we refer to equations of [1] we will add the superscript 1 to the equation number. For example, $(18)^{1}$ refers to equation (18) of [1] which shows that the zonal spherical functions can be expressed in terms of Gegenbauer polynomials. In fact, using this relation the integral (1) may
\dagger Note that equation (47) in [1] should read $\left\{\begin{array}{ccc}\ell_{1} & \ell_{2} & \ell_{3} \\ 0 & \ell_{5} & \ell_{6}\end{array}\right\}_{(n)}=\left((-1)^{\ell_{1}+\ell_{2}+\ell_{3}} / \sqrt{d_{\ell_{2}} d_{\ell_{3}}}\right) \delta_{\ell_{2} \ell_{6}} \delta_{\ell_{3} \ell_{5}}$ if $\ell_{1}, \ell_{2}, \ell_{3}$ obey the triangular condition and vanishes otherwise.
be rewritten as follows:

$$
\begin{align*}
& I_{n}=\left[\prod_{i=1}^{6} \frac{\ell_{1}!(n-3)!}{\left(\ell_{i}+n-3\right)!}\right] \int_{S^{n-1}} \frac{\mathrm{~d}^{n-1} \boldsymbol{e}_{1}}{\left|S^{n-1}\right|} \int_{S^{n-1}} \frac{\mathrm{~d}^{n-1} e_{2}}{\left|S^{n-1}\right|} \int_{S^{n-1}} \frac{\mathrm{~d}^{n-1} e_{3}}{\left|S^{n-1}\right|} \\
& \quad \times C_{\ell_{1}}^{(n-2) / 2}\left(\boldsymbol{a} \cdot \boldsymbol{e}_{1}\right) C_{\ell_{2}}^{(n-2) / 2}\left(\boldsymbol{a} \cdot \boldsymbol{e}_{2}\right) C_{\ell_{3}}^{(n-2) / 2}\left(\boldsymbol{a} \cdot \boldsymbol{e}_{3}\right) \\
& \times C_{\ell_{4}}^{(n-2) / 2}\left(\boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3}\right) C_{\ell_{5}}^{(n-2) / 2}\left(\boldsymbol{e}_{3} \cdot \boldsymbol{e}_{1}\right) C_{\ell_{6}}^{(n-2) / 2}\left(\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{2}\right) \tag{4}
\end{align*}
$$

Here and in the following we will use the same notation as in [1]. Denoting by θ_{i} the polar angle of the unit vector $\boldsymbol{e}_{i} \in S^{n-1}$ we have $\boldsymbol{e}_{i}=\left(\sin \theta_{i} \boldsymbol{f}_{i}, \cos \theta_{i}\right)$ with $\boldsymbol{f}_{i} \in S^{n-2}$. Using $\boldsymbol{a} \cdot \boldsymbol{e}_{i}=\cos \theta_{i}$ and the addition theorem for Gegenbauer polynomials [8]

$$
\begin{align*}
C_{\ell}^{n / 2-1}\left(\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}\right) & =\sum_{m=0}^{\ell} a(n, \ell, m) \sin ^{m} \theta_{i} C_{\ell-m}^{m+n / 2-1}\left(\cos \theta_{i}\right) \sin ^{m} \theta_{j} C_{\ell-m}^{m+n / 2-1}\left(\cos \theta_{j}\right) \\
& \times C_{m}^{(n-3) / 2}\left(\boldsymbol{f}_{i} \cdot \boldsymbol{f}_{j}\right) \tag{5}
\end{align*}
$$

where we have set

$$
\begin{equation*}
a(n, \ell, m):=\frac{2^{2 m}(n-4)!(\ell-m)!\Gamma^{2}(m+n / 2-1)}{(\ell+m+n-3)!\Gamma^{2}(n / 2-1)}(2 m+n-3) \tag{6}
\end{equation*}
$$

the above integrations can be factorized into those over the polar angles and the remaining integrals over S^{n-2}. For this we have also to make use of (39) ${ }^{1}$ in the form

$$
\begin{equation*}
\int_{S^{n-1}} \frac{\mathrm{~d}^{n-1} e}{\left|S^{n-1}\right|}(\cdot)=\frac{\Gamma(n / 2)}{\sqrt{\pi} \Gamma((n-1) / 2)} \int_{0}^{\pi} \mathrm{d} \theta \sin ^{n-2} \theta \int_{S^{n-2}} \frac{\mathrm{~d}^{n-2} f}{\left|S^{n-2}\right|}(\cdot) \tag{7}
\end{equation*}
$$

The part of (4) which involves the f-integrations reads ($m_{i}=0,1, \ldots, \ell_{3+i}$)

$$
\begin{align*}
F_{n}:= & \int_{S^{n-2}} \frac{\mathrm{~d}^{n-2} \boldsymbol{f}_{1}}{\left|S^{n-2}\right|} \int_{S^{n-2}} \frac{\mathrm{~d}^{n-2} \boldsymbol{f}_{2}}{\left|S^{n-2}\right|} \int_{S^{n-2}} \frac{\mathrm{~d}^{n-2} \boldsymbol{f}_{3}}{\left|S^{n-2}\right|} \\
& \times C_{m_{1}}^{(n-3) / 2}\left(\boldsymbol{f}_{2} \cdot \boldsymbol{f}_{3}\right) C_{m_{2}}^{(n-3) / 2}\left(\boldsymbol{f}_{3} \cdot \boldsymbol{f}_{1}\right) C_{m_{3}}^{(n-3) / 2}\left(\boldsymbol{f}_{1} \cdot \boldsymbol{f}_{2}\right) \\
= & \prod_{i=1}^{3}\left[\frac{\left(m_{i}+n-4\right)!}{m_{i}!(n-4)!}\right] \\
& \times \int_{S O(n-1)} \mathrm{d} h_{1} \int_{S O(n-1)} \mathrm{d} h_{2} \int_{S O(n-1)} \mathrm{d} h_{3} D_{00}^{m_{1}}\left(h_{2}^{-1} h_{3}\right) D_{00}^{m_{2}}\left(h_{3}^{-1} h_{1}\right) D_{00}^{m_{3}}\left(h_{1}^{-1} h_{2}\right) \tag{8}
\end{align*}
$$

where D_{00}^{m} denotes zonal spherical functions of the subgroup $S O(n-1)$. These group integrations are easily performed via the orthogonality relation for the $S O(n-1)$ matrix elements D_{00}^{m}, cf (12) ${ }^{1}$. Consequently, all m_{i} 's have to be equal, $m \equiv m_{1}=m_{2}=m_{3}=$ $0,1,2, \ldots, \min \left\{\ell_{4}, \ell_{5}, \ell_{6}\right\}$, and the result reads

$$
\begin{equation*}
F_{n}=\sum_{m=0}^{\min \left\{\ell_{4}, \ell_{5}, \ell_{6}\right\}} \delta_{m m_{1}} \delta_{m m_{2}} \delta_{m m_{3}} \frac{(m+n-4)!}{m!(n-4)!}\left(\frac{n-3}{2 m+n-3}\right)^{2} \tag{9}
\end{equation*}
$$

With the help of this result we are now able to put the quantity of our interest into the form

$$
\begin{align*}
I_{n}=\left[\prod_{i=1}^{6} \frac{\ell_{i}!(n-3)!}{\left(\ell_{i}+n-3\right)!}\right] & \left(\frac{\Gamma(n / 2)}{\sqrt{\pi} \Gamma((n-1) / 2)}\right)^{3} \\
& \quad \times \sum_{m=0}^{\min \left\{\ell_{4}, \ell_{5}, \ell_{6}\right\}} \frac{(m+n-4)!}{m!(n-4)!}\left(\frac{n-3}{2 m+n-3}\right)^{2}\left[\prod_{i=4}^{6} a\left(n, \ell_{i}, m\right)\right] \\
& \quad \times G_{n}\left(\ell_{1}, \ell_{5}, \ell_{6}, m\right) G_{n}\left(\ell_{2}, \ell_{4}, \ell_{6}, m\right) G_{n}\left(\ell_{3}, \ell_{4}, \ell_{5}, m\right) \tag{10}
\end{align*}
$$

and thus have reduced it to three elementary integrals of the type

$$
\begin{align*}
G_{n}\left(j_{1}, j_{2}, j_{3}, m\right) & :=\int_{0}^{\pi} \mathrm{d} \theta \sin ^{2 m+n-2} \theta \\
\times & C_{j_{1}}^{n / 2-1}(\cos \theta) C_{j_{2}-m}^{m+n / 2-1}(\cos \theta) C_{j_{3}-m}^{m+n / 2-1}(\cos \theta) . \tag{11}
\end{align*}
$$

This integral is a special case of a class of integrals already studied in [1], cf (41) ${ }^{1}$, where we have been able to represent such integrals by three finite sums. However, because of its special form we have decided to evaluate (11) in a different way. In doing so we first recall the recurrence relation [10] for the Gegenbauer polynomials,

$$
\begin{equation*}
C_{j}^{\lambda}(x)=\frac{\lambda}{j+\lambda}\left[C_{j}^{\lambda+1}(x)-C_{j-2}^{\lambda+1}(x)\right] \tag{12}
\end{equation*}
$$

which is also valid for $j=0,1$ if we use the convention that Gegenbauer polynomials with a 'negative degree' (the lower index) vanish identically. Iterating this recurrence relation m times we find

$$
\begin{equation*}
C_{j}^{n / 2-1}(\cos \theta)=\sum_{k=0}^{\min \{m,[j / 2]\}}(-1)^{k} b(n, j, k, m) C_{j-2 k}^{m+n / 2-1}(\cos \theta) \tag{13}
\end{equation*}
$$

where we have introduced
$b(n, j, k, m):=\frac{m!\Gamma(m+(n-2) / 2) \Gamma(j-k+(n-2) / 2)}{k!(m-k)!\Gamma((n-2) / 2) \Gamma(j+m-k+n / 2)}(j+m-2 k+(n-2) / 2)$.

Now replacing the first Gegenbauer polynomial in (11) with the help of (13) we realize that the integral (11) represents in essence a $3 j$-symbol of the group $S O(2 m+n)$, cf $(21)^{1}$:

$$
\begin{align*}
G_{n}\left(j_{1}, j_{2}, j_{3}, m\right. & =\frac{\sqrt{\pi} \Gamma(m+(n-1) / 2)}{\Gamma(m+n / 2)[(2 m+n-3)!]^{3}} \sum_{k=0}^{\min \left\{m,\left[j_{1} / 2\right]\right\}}(-1)^{k} b\left(n, j_{1}, k, m\right) \\
& \times \frac{\left(j_{1}-2 k+2 m+n-3\right)!\left(j_{2}+m+n-3\right)!\left(j_{3}+m+n-3\right)!}{\left(j_{1}-2 k\right)!\left(j_{2}-m\right)!\left(j_{3}-m\right)!} \\
& \times\left(\begin{array}{ccc}
j_{1}-2 k & j_{2}-m & j_{3}-m \\
0 & 0 & 0
\end{array}\right)_{(n+2 m)}^{2} . \tag{15}
\end{align*}
$$

Thus we have succeeded in expressing the integral (11) by a single finite sum and in turn found a rather simple expression for the integral (1) in terms of four finite sums and $3 j$-symbols of $S O(2 m+n)$ with $m=0,1, \ldots, \min \left\{\ell_{4}, \ell_{5}, \ell_{6}\right\}$. Expression (10) together with (6), (14) and (15) thus provides us with an elementary formula for $I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$, which is fairly simple and can easily be evaluated using, for example, some computer-algebra program like Mathematica \dagger. We also note that in our result gamma functions with a half-integer argument always occur in terms of a quotient and therefore I_{n} is, for given integer ℓ 's and n, a rational number.

3. Discussion

In this section we will briefly discuss the symmetry properties of $I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$, the corresponding $6 j$-symbol and its relation to the result of Ališauskas [3]. First we note that the
\dagger A Mathematica package, which implements the results of this paper can be obtained from the authors at http://theorie1.physik.uni-erlangen.de/hormess.

Table 1. Explicit expressions for the non-vanishing integrals $I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$ defined in (1) and the corresponding quantity $c_{\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}}^{(\alpha)}$ defined in (17).

$\left(\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}\right)$	$I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$	$c_{\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}}$
(112112)	$4(n-2)$	$\underline{(n-2)(n-1) n}$
	$\overline{(n-1) n^{3}(n+2)^{3}}$	$n+2$
(112132)	24	$\underline{(n-1) n^{3}}$
	$(n-1)^{2} n(n+2)^{3}(n+4)$	$n+2$
(112221)	$\frac{8(n-2)}{(n-1)^{2} n^{2}(n+2)^{3}}$	$(n-2)(n-1) n$
(112223)	$48(n-2)$	$(n-2)(n-1) n^{2}$
	$\overline{(n-1)^{3} n(n+2)^{3}(n+4)^{2}}$	$n+4$
(112243)	288	$\underline{(n-1) n^{3}(n+1)}$
	$\overline{(n-1)^{3} n(n+2)^{2}(n+4)^{2}(n+6)}$	$2(n+4)$
(112332)	$72(n-2)(n+1)$	$\underline{(n-2)(n-1) n^{2}(n+1)}$
	$\overline{(n-1)^{3} n^{2}(n+2)^{3}(n+4)^{2}}$	$2(n+2)$
(112334)	$864(n-2)$	$\underline{(n-2)(n-1) n^{2}(n+1)}$
	$(n-1)^{3} n^{3}(n+2)(n+4)^{2}(n+6)^{2}$	$2(n+6)$
(112443)	1152(n-2)	$\underline{(n-2)(n-1) n^{2}(n+1)(n+2)}$
	$(n-1)^{3} n^{3}(n+1)(n+4)^{2}(n+6)^{2}$	$6(n+4)$
(123123)	$72(n-2)$	$\underline{(n-2)(n-1) n^{3}}$
	$(n-1)^{3} n(n+2)^{3}(n+4)^{3}$	$2(n+2)(n+4)$
(123143)	864	$\underline{(n-1) n^{3}(n+1)}$
	$\overline{(n-1)^{3} n^{2}(n+2)(n+4)^{3}(n+6)}$	$2(n+4)$
(123232)	$288(n-2)(n+1)$	$(n-2)(n-1) n^{2}(n+1)$
	$\overline{(n-1)^{4} n(n+2)^{3}(n+4)^{3}}$	$n+4$
(123234)	$1728(n-2)$	$\underline{(n-2)(n-1) n^{3}(n+1)}$
	$\overline{(n-1)^{4} n(n+2)^{2}(n+4)^{3}(n+6)^{2}}$	$2(n+4)(n+6)$
(123323)	$864(n-2)(n+1)$	$(n-2)(n-1) n^{3}(n+1)$
	$\overline{(n-1)^{4} n(n+2)^{3}(n+4)^{3}(n+6)}$	$(n+2)(n+6)$
(123343)	5184($n-2$)	$(n-2)(n-1) n^{3}(n+1)$
	$\overline{(n-1)^{4} n^{2}(n+2)(n+4)^{3}(n+6)^{2}}$	$2(n+6)$
(123432)	$864(n-2)$	$\underline{(n-2)(n-1) n^{3}(n+1)}$
	$\overline{(n-1)^{4} n(n+2)^{2}(n+4)^{3}(n+6)}$	$4(n+4)$
(123434)	$20736(n-2)$	$\underline{(n-2)(n-1) n^{3}(n+1)(n+2)}$
	$(n-1)^{4} n^{2}(n+1)(n+4)^{3}(n+6)^{2}(n+8)$	$2(n+4)(n+8)$
(134134)	$3456(n-2)$	$\underline{(n-2)(n-1) n^{3}(n+1)}$
	$\overline{(n-1)^{3} n^{3}(n+1)(n+4)^{3}(n+6)^{3}}$	$6(n+4)(n+6)$
(134243)	$20736(n-2)(n+2)$	$\underline{(n-2)(n-1) n^{2}(n+1)(n+2)^{2}}$
	$\overline{(n-1)^{4} n^{3}(n+1)(n+4)^{3}(n+6)^{3}}$	$2(n+4)(n+6)$
(134334)	$62208(n-2)$	$\underline{(n-2)(n-1) n^{4}(n+1)}$
	$(n-1)^{4} n^{2}(n+1)(n+4)^{3}(n+6)^{3}(n+8)$	$2(n+6)(n+8)$
(134443)	$124416(n-2)(n+3)$	$\underline{(n-2)(n-1) n^{4}(n+1)(n+3)}$
	$(n-1)^{4} n^{2}(n+1)^{2}(n+4)^{3}(n+6)^{3}(n+8)$	$4(n+4)(n+8)$
(222222)	64(n-2)($\left.n^{2}+4 n-24\right)$	$\underline{(n-2)(n-1)(n+2)^{3}\left(n^{2}+4 n-24\right)}$
	$(n-1)^{5}(n+2)^{3}(n+4)^{3}$	$(n+4)^{3}$
(222224)	$768(n-2) n$	$(n-2)(n-1) n^{2}(n+1)(n+2)^{2}$
	$\overline{(n-1)^{5}(n+2)^{3}(n+4)^{3}(n+6)}$	$(n+4)^{3}$

Table 1. Continued.

$\left(\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}\right)$	$I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$
(222244)	$\frac{4608(n-2)}{(n-1)^{5}(n+1)(n+2)(n+4)^{3}(n+6)^{2}}$
(222333)	$\frac{864(n-2)(n+1)\left(n^{3}+8 n^{2}-28 n-48\right)}{(n-1)^{5} n^{2}(n+2)^{3}(n+4)^{3}(n+6)^{2}}$
(222444)	$\frac{18432(n-2)\left(n^{3}+12 n^{2}-24 n-128\right)}{(n-1)^{5} n^{2}(n+1)^{2}(n+4)^{3}(n+6)^{2}(n+8)^{2}}$
(224224)	$\frac{2304(n-2) n^{2}}{(n-1)^{5}(n+1)(n+2)^{3}(n+4)^{3}(n+6)^{3}}$
(224244)	$\frac{55296(n-2)}{(n-1)^{5}(n+1)^{2}(n+4)^{3}(n+6)^{3}(n+8)}$
(224333)	$\frac{20736(n-2)}{(n-1)^{5}(n+2)^{2}(n+4)^{3}(n+6)^{3}}$
(224442)	$\frac{13824(n-2) n(n+3)}{(n-1)^{5}(n+1)^{2}(n+2)^{2}(n+4)^{3}(n+6)^{3}}$
(224444)	$\frac{663552(n-2)(n+3)}{(n-1)^{5}(n+1)^{3}(n+4)^{3}(n+6)^{3}(n+8)^{2}}$
(233233)	$\frac{2592(n-2)(n+1)\left(2 n^{4}+17 n^{3}-14 n^{2}-84 n-72\right)}{(n-1)^{5} n^{3}(n+2)^{3}(n+4)^{3}(n+6)^{3}}$
(233344)	$\frac{124416(n-2)\left(n^{3}+10 n^{2}-20 n-48\right)}{(n-1)^{5} n^{3}(n+1)(n+4)^{3}(n+6)^{3}(n+8)^{2}}$
(233433)	$\frac{15552(n-2)\left(n^{3}+11 n^{2}-48 n-36\right)}{(n-1)^{5} n^{3}(n+2)(n+4)^{3}(n+6)^{3}(n+8)}$
(244244)	$\frac{221184(n-2)(n+2)\left(3 n^{4}+40 n^{3}+72 n^{2}-192 n-512\right)}{(n-1)^{5} n^{3}(n+1)^{3}(n+4)^{3}(n+6)^{3}(n+8)^{3}}$
(244444)	$\frac{3981312(n-2)(n+2)(n+3)\left(n^{3}+14 n^{2}-16 n-128\right)}{(n-1)^{5} n^{2}(n+1)^{4}(n+4)^{3}(n+6)^{3}(n+8)^{3}(n+10)}$
(334334)	$\frac{186624(n-2)\left(4 n^{2}+37 n-50\right)}{(n-1)^{5} n^{2}(n+1)(n+4)^{3}(n+6)^{3}(n+8)^{3}}$
(334443)	$\frac{373248(n-4)(n-2)(n+3)(n+20)}{(n-1)^{5} n^{2}(n+1)^{2}(n+4)^{3}(n+6)^{3}(n+8)^{3}}$
(444444)	$\frac{11943936(n-2)(n+3)\left(n^{6}+43 n^{5}+400 n^{4}-212 n^{3}-6752 n^{2}-5888 n+15360\right)}{(n-1)^{5} n^{2}(n+1)^{5}(n+4)^{3}(n+6)^{3}(n+8)^{3}(n+10)^{3}}$

$3 j$-symbol (3) is obviously invariant under any permutation of the ℓ 's. In addition, we note that because of the first $3 j$-symbol appearing on the right-hand side of (2), the phase factor in front of it may be replaced by $(-1)^{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}+\ell_{5}+\ell_{6}}$ as $\ell_{1}+\ell_{2}+\ell_{3}$ is required to be an even integer. As a consequence $I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$ and the $6 j$-symbol have identical symmetry properties. Using the invariance property of the Haar measure in (1) one easily verifies that

$$
\begin{gather*}
\left\{\begin{array}{lll}
\ell_{1} & \ell_{2} & \ell_{3} \\
\ell_{4} & \ell_{5} & \ell_{6}
\end{array}\right\}_{(n)}=\left\{\begin{array}{lll}
\ell_{2} & \ell_{3} & \ell_{1} \\
\ell_{5} & \ell_{6} & \ell_{4}
\end{array}\right\}_{(n)}=\left\{\begin{array}{lll}
\ell_{3} & \ell_{1} & \ell_{2} \\
\ell_{6} & \ell_{4} & \ell_{5}
\end{array}\right\}_{(n)}=\left\{\begin{array}{lll}
\ell_{2} & \ell_{1} & \ell_{3} \\
\ell_{5} & \ell_{4} & \ell_{6}
\end{array}\right\}_{(n)} \\
=\left\{\begin{array}{lll}
\ell_{1} & \ell_{3} & \ell_{2} \\
\ell_{4} & \ell_{6} & \ell_{5}
\end{array}\right\}_{(n)}=\left\{\begin{array}{lll}
\ell_{3} & \ell_{2} & \ell_{1} \\
\ell_{6} & \ell_{5} & \ell_{4}
\end{array}\right\}_{(n)}=\left\{\begin{array}{lll}
\ell_{1} & \ell_{5} & \ell_{6} \\
\ell_{4} & \ell_{2} & \ell_{3}
\end{array}\right\}_{(n)} \tag{16}
\end{gather*}
$$

These are indeed the well known [11] symmetries of the $6 j$-symbols for the group $S O(3)$, which are thus shown to be valid for all $n \geqslant 3$ if class-one representations are considered

Table 1. Continued.

$\underline{\left(\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}\right) c_{\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}}^{(\alpha)}}$	
(222244)	$\underline{(n-2)(n-1) n^{2}(n+1)(n+2)^{3}}$
	$2(n+4)^{3}$
(222333)	$(n-2)(n-1) n(n+1)\left(n^{3}+8 n^{2}-28 n-48\right)$
	$2(n+6)^{2}$
(222444)	$\underline{(n-2)(n-1) n(n+1)(n+2)^{3}(n+6)\left(n^{3}+12 n^{2}-24 n-128\right)}$
	$6(n+4)^{3}(n+8)^{2}$
(224224)	$(n-2)(n-1) n^{4}(n+1)(n+2)$
	$4(n+4)^{3}(n+6)$
(224244)	$\underline{(n-2)(n-1) n^{3}(n+1)(n+2)^{3}}$
	$2(n+4)^{3}(n+8)$
(224333)	$\underline{(n-2)(n-1) n^{4}(n+1)}$
	$(n+6)^{2}$
(224442)	$\underline{(n-2)(n-1) n^{4}(n+1)(n+2)(n+3)}$
	$8(n+4)^{3}$
(224444)	$\underline{(n-2)(n-1) n^{4}(n+1)(n+2)^{2}(n+3)(n+6)}$
	2(n+4) ${ }^{3}(n+8)^{2}$
(233233)	$\underline{(n-2)(n-1) n(n+1)(n+4)\left(2 n^{4}+17 n^{3}-14 n^{2}-84 n-72\right)}$
	$2(n+2)(n+6)^{3}$
(233344)	$\underline{(n-2)(n-1) n^{2}(n+1)(n+2)\left(n^{3}+10 n^{2}-20 n-48\right)}$
	$2(n+6)(n+8)^{2}$
(233433)	$\underline{(n-2)(n-1) n^{2}(n+1)(n+4)\left(n^{3}+11 n^{2}-48 n-36\right)}$
	$4(n+6)^{2}(n+8)$
(244244)	$(n-2)(n-1) n(n+1)(n+2)^{3}(n+6)\left(3 n^{4}+40 n^{3}+72 n^{2}-192 n-512\right)$
	$6(n+4)^{3}(n+8)^{3}$
(244444)	$(n-2)(n-1) n^{3}(n+1)(n+2)^{2}(n+3)(n+6)^{2}\left(n^{3}+14 n^{2}-16 n-128\right)$
	$4(n+4)^{3}(n+8)^{3}(n+10)$
(334334)	$\underline{(n-2)(n-1) n^{4}(n+1)(n+4)\left(4 n^{2}+37 n-50\right)}$
	$4(n+6)(n+8)^{3}$
(334443)	$\underline{(n-4)(n-2)(n-1) n^{4}(n+1)(n+3)(n+20)}$
	$8(n+8)^{3}$
(444444)	$\underline{(n-2)(n-1) n^{4}(n+1)(n+3)(n+6)^{3}\left(n^{6}+43 n^{5}+400 n^{4}-212 n^{3}-6752 n^{2}-5888 n+15360\right)}$
	$16(n+4)^{3}(n+8)^{3}(n+10)^{3}$

only. The additional Regge symmetry [12] known for the case $n=3$ cannot be verified by these methods and thus it is not clear whether it holds for arbitrary $n>3$. In combination with these symmetry properties table 1 presents for all $\ell_{i} \in\{1,2,3,4\}$ explicit values for $I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$ and

$$
\begin{equation*}
c_{\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}}^{(\alpha)}:=d_{\ell_{1}} d_{\ell_{2}} d_{\ell_{3}} d_{\ell_{4}} d_{\ell_{5}} d_{\ell_{6}} I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right) \tag{17}
\end{equation*}
$$

where $d_{\ell}:=(2 \ell+n-2)(\ell+n-3)!/[\ell!(n-2)!]$ denotes the dimension of the ℓ th representation. Note that the quantity (17) is the actual contribution of the α-topology to the high-temperature expansion of $S O(n)$-symmetric lattice models [5]. Thus with the tabulated quantities (17) one can derive high-temperature expansions for $S O(n)$-symmetric lattice models to rather high order in the inverse temperature. For example, with only a few of the tabulated values of (17)
one can find all expansion coefficients up to order ten for the specific heat [13] of a mixed isovector-isotensor model, which recently has attracted much attention [9, 14].

Finally, we would like to comment on the relation of our result with that of Ališauskas [3] on the $6 j$-symbol. First we recall that with our explicit result (10) for I_{n} we have, with the help of (2), a similar representation for the $6 j$-symbol, at least for those cases where the additional $3 j$-symbols appearing on the right-hand side of (2) do not vanish. Here the result has been derived via explicit group integration, whereas Ališauskas [3] uses a series representation of the $6 j$-symbol in terms of isoscalar factors. Indeed, this representation (equation (5.1) in [3]) is very much similar in form to our result (10) for I_{n}. Note that the quantity G_{n} defined in (11) is, in fact, closely related to an isoscalar factor of $S O(n)$, cf $(41)^{1}-(44)^{1}$. In addition to that, Ališauskas [3] was also able to show that these isoscalars may be expressed in terms of (generalized) $6 j$-coefficients of $S U(2)$ which further allowed him to simplify his series representation to three finite sums, see (5.7) in [3] which is valid for $n \geqslant 5$. In contrast to this, we have considered not the $6 j$-symbol itself but the group integral I_{n} and represented it by four finite sums. As long as the involved representation labels ℓ are small enough, which is actually the case for a high-temperature expansion, this does not cause any disadvantage. The advantage of considering $I_{n}\left(\ell_{1}, \ell_{2}, \ell_{3} \mid \ell_{4}, \ell_{5}, \ell_{6}\right)$, respectively, $c_{\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5} \ell_{6}}^{(\alpha)}$, is that the resulting expressions (see table 1) are valid for all $n \geqslant 2$ and thus allow for a general discussion of the high-temperature expansion of $S O(n)$-symmetric lattice models including the important $X Y$-model $(n=2)$ and Heisenberg model $(n=3)$.

References

[1] Junker G 1993 J. Phys. A: Math. Gen. 26 1649-61
[2] Judd B R, Lister G M S and O'Brien M C M 1986 J. Phys. A: Math. Gen. 19 2473-86 Judd B R 1987 J. Phys. A: Math. Gen. 20 L343-7 Judd B R, Leavitt R C and Lister G M S 1990 J. Phys. A: Math. Gen. 23 385-405
[3] Ališauskas S 1987 J. Phys. A: Math. Gen. 20 35-45
[4] Joyce G S 1967 Phys. Rev. 155 478-91
[5] Domb C 1972 J. Phys. A: Math. Gen. 5 1417-28
[6] Vilenkin N J 1968 Special Functions and the Theory of Group Representations (Providence, RI: American Mathematical Society)
[7] Ališauskas S J 1983 Sov. J. Part. Nucl. 14 563-82
[8] Vilenkin N J 1968 Special Functions and the Theory of Group Representations (Providence, RI: American Mathematical Society) p 472, equation (3)
[9] Cucchieri A, Mendes T, Pelissetto A and Sokal A D 1997 J. Stat. Phys. 86 581-673
[10] Magnus W, Oberhettinger F and Soni R P 1966 Formulas and Theorems for the Special Functions of Mathematical Physics (Berlin: Springer) p 222
[11] Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press) p 94f
[12] Regge T 1959 Nuovo Cimento 11 116-7
[13] Hormeß M and Junker G 1999 In preparation
[14] Seiler E and Yildirim K 1997 J. Math. Phys. 38 4872-81 Junker G, Leschke H and Zan I 1997 Physica A 237 257-84

