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Abstract. We present explicit closed-form expressions for the general group-theoretical factor
appearing in theα-topology of a high-temperature expansion ofSO(n)-symmetric lattice models.
This object, which is closely related to 6j -symbols for the most degenerate representation ofSO(n),
is discussed in detail.

1. Introduction

In this paper we extend our previous studies [1] on coupling coefficients for the so-called most
degenerate (also called symmetric or class-one) representations ofSO(n). These coupling
coefficients are important in many fields of theoretical physics such as atomic and nuclear
physics. For example, in connection with the Jahn–Teller effect an extensive study of particular
6j -symbols is due to Judd and co-workers [2]. A detailed study of isoscalar factors of
SO(n) ⊃ SO(n − 1) and related 6j -coefficients has been made by Ališauskas [3], showing
that the 6j -coefficients ofSO(n) can be expressed in terms of (generalized) 6j -coefficients of
SU(2).

Coupling coefficients of the most degenerate representations ofSO(n) also appear as
group-theoretical factors in the high-temperature expansion ofSO(n)-symmetric classical
lattice models [4, 5] such as theXY -model (n = 2) and the Heisenberg model (n = 3). In
this paper we present new explicit results for the so-calledα-graph, which contributes with
the following group-theoretical factor to the high-temperature expansion of the free energy of
such models [1, 4, 5]:

In ≡ In(`1, `2, `3|`4, `5, `6)

:=
∫
SO(n)

dg1

∫
SO(n)

dg2

∫
SO(n)

dg3D`1
00(g1)D`2

00(g2)D`3
00(g3)D`4

00(g
−1
2 g3)

× D`5
00(g

−1
3 g1)D`6

00(g
−1
1 g2). (1)

HereD`00(g)denotes a particular matrix element (the zonal spherical function) of the`th unitary
irreducible class-one representation ofSO(n), ` ∈ N0, and dg is the normalized invariant Haar
measure onSO(n). For details we refer to our earlier work [1]. Here we only note the relation
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of the above integral with the 6j -symbols ofSO(n):

In = (−1)`4+`5+`6

(
`1 `2 `3

0 0 0

)
(n)

(
`1 `5 `6

0 0 0

)
(n)

(
`4 `2 `6

0 0 0

)
(n)

×
(
`3 `4 `5

0 0 0

)
(n)

{
`1 `2 `3

`4 `5 `6

}
(n)

(2)

where(
`1 `2 `3

0 0 0

)2

(n)

:=
∫
SO(n)

dgD`1
00(g)D

`2
00(g)D

`3
00(g)

= (J + n− 3)!

(n− 3)! 02(n/2) 0(J + n/2)

3∏
i=1

[
(n− 2)! `i ! 0(J − `i + (n− 2)/2)

2 (`i + n− 3)! (J − `i)!
]

(3)

denotes the square of a 3j -symbol, which vanishes unlessJ := (`1+`2+`3)/2 is a non-negative
integer,J ∈ N0, and thè ’s obey the triangular relation well known from the casen = 3. This
result, in essence, goes back to an earlier one of Vilenkin [6] (equation (6), p 490; see also
the work of Ališauskas [7] and references therein). A derivation of (3) can be found in [1],
equations (21)–(24), where a phase convention for the 3j -symbol is also given. This together
with an explicit expression forIn then leads to a closed-form expression for the 6j -symbol,
which is denoted with curly brackets in (2). The resulting expressions are indeed similar to
those obtained by Ališauskas [3].

The purpose of this paper is to derive a rather elementary expression for the above group
integralIn(`1, `2, `3|`4, `5, `6) which allows us to present, for given but arbitrary values of
the`’s and anyn, explicit results for (1). So far only particular results have been given in the
literature. For example, for arbitraryn and(`1, `2, `3, `4, `5, `6) = (1, 1, 2, 1, 1, 2) an explicit
expression has been given by Domb [5], the elementary case`4 = 0 can be found in [1]† and,
rather recently, some results have been given for the cases where one of the`’s equals one or
two [9].

The remaining part of this paper deals with the derivation of an elementary expression
for In, which is given below in (10) in combination with (6), (14) and (15). Together with the
above expression for the 3j -symbol we have thus also obtained a new elementary expression
for the corresponding 6j -symbol. We finally present some explicit results for arbitraryn and
`i ∈ {1, 2, 3, 4} after briefly discussing the symmetry properties ofIn. Our result will also be
compared with that of Alǐsauskas [3].

2. Explicit integration of (1)

In this section we will make extensive use of our previous results [1]. In the following if we
refer to equations of [1] we will add the superscript 1 to the equation number. For example,
(18)1 refers to equation (18) of [1] which shows that the zonal spherical functions can be
expressed in terms of Gegenbauer polynomials. In fact, using this relation the integral (1) may

† Note that equation (47) in [1] should read
{
`1 `2 `3
0 `5 `6

}
(n)
= ((−1)`1+`2+`3/

√
d`2d`3) δ`2`6δ`3`5 if `1, `2, `3

obey the triangular condition and vanishes otherwise.
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be rewritten as follows:

In =
[

6∏
i=1

`i ! (n− 3)!

(`i + n− 3)!

]∫
Sn−1

dn−1e1

|Sn−1|
∫
Sn−1

dn−1e2

|Sn−1|
∫
Sn−1

dn−1e3

|Sn−1|
×C(n−2)/2

`1
(a · e1) C

(n−2)/2
`2

(a · e2) C
(n−2)/2
`3

(a · e3)

×C(n−2)/2
`4

(e2 · e3) C
(n−2)/2
`5

(e3 · e1) C
(n−2)/2
`6

(e1 · e2). (4)

Here and in the following we will use the same notation as in [1]. Denoting byθi the polar
angle of the unit vectorei ∈ Sn−1 we haveei = (sinθifi , cosθi) with fi ∈ Sn−2. Using
a · ei = cosθi and the addition theorem for Gegenbauer polynomials [8]

C
n/2−1
` (ei · ej ) =

∑̀
m=0

a(n, `,m) sinm θi C
m+n/2−1
`−m (cosθi) sinm θj C

m+n/2−1
`−m (cosθj )

×C(n−3)/2
m (fi · fj ) (5)

where we have set

a(n, `,m) := 22m(n− 4)! (`−m)! 02(m + n/2− 1)

(` +m + n− 3)! 02(n/2− 1)
(2m + n− 3) (6)

the above integrations can be factorized into those over the polar angles and the remaining
integrals overSn−2. For this we have also to make use of(39)1 in the form∫

Sn−1

dn−1e

|Sn−1| (·) =
0(n/2)√

π 0((n− 1)/2)

∫ π

0
dθ sinn−2 θ

∫
Sn−2

dn−2f

|Sn−2| (·). (7)

The part of (4) which involves thef -integrations reads (mi = 0, 1, . . . , `3+i)

Fn :=
∫
Sn−2

dn−2f1

|Sn−2|
∫
Sn−2

dn−2f2

|Sn−2|
∫
Sn−2

dn−2f3

|Sn−2|
× C(n−3)/2

m1
(f2 · f3) C

(n−3)/2
m2

(f3 · f1) C
(n−3)/2
m3

(f1 · f2)

=
3∏
i=1

[
(mi + n− 4)!

mi ! (n− 4)!

]
×
∫
SO(n−1)

dh1

∫
SO(n−1)

dh2

∫
SO(n−1)

dh3D
m1
00 (h

−1
2 h3)D

m2
00 (h

−1
3 h1)D

m3
00 (h

−1
1 h2) (8)

whereDm
00 denotes zonal spherical functions of the subgroupSO(n − 1). These group

integrations are easily performed via the orthogonality relation for theSO(n − 1) matrix
elementsDm

00, cf (12)1. Consequently, allmi ’s have to be equal,m ≡ m1 = m2 = m3 =
0, 1, 2, . . . ,min{`4, `5, `6}, and the result reads

Fn =
min{`4,`5,`6}∑

m=0

δmm1δmm2δmm3

(m + n− 4)!

m! (n− 4)!

(
n− 3

2m + n− 3

)2

. (9)

With the help of this result we are now able to put the quantity of our interest into the form

In =
[

6∏
i=1

`i ! (n− 3)!

(`i + n− 3)!

](
0(n/2)√

π 0((n− 1)/2)

)3

×
min{`4,`5,`6}∑

m=0

(m + n− 4)!

m! (n− 4)!

(
n− 3

2m + n− 3

)2
[

6∏
i=4

a(n, `i, m)

]
×Gn(`1, `5, `6, m)Gn(`2, `4, `6, m)Gn(`3, `4, `5, m) (10)
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and thus have reduced it to three elementary integrals of the type

Gn(j1, j2, j3, m) :=
∫ π

0
dθ sin2m+n−2 θ

×Cn/2−1
j1

(cosθ) Cm+n/2−1
j2−m (cosθ) Cm+n/2−1

j3−m (cosθ). (11)

This integral is a special case of a class of integrals already studied in [1], cf(41)1, where
we have been able to represent such integrals by three finite sums. However, because of its
special form we have decided to evaluate (11) in a different way. In doing so we first recall
the recurrence relation [10] for the Gegenbauer polynomials,

Cλj (x) =
λ

j + λ

[
Cλ+1
j (x)− Cλ+1

j−2(x)
]

(12)

which is also valid forj = 0, 1 if we use the convention that Gegenbauer polynomials with
a ‘negative degree’ (the lower index) vanish identically. Iterating this recurrence relationm

times we find

C
n/2−1
j (cosθ) =

min{m,[j/2]}∑
k=0

(−1)k b(n, j, k,m)Cm+n/2−1
j−2k (cosθ) (13)

where we have introduced

b(n, j, k,m) := m! 0(m + (n− 2)/2) 0(j − k + (n− 2)/2)

k! (m− k)! 0((n− 2)/2) 0(j +m− k + n/2)
(j +m− 2k + (n− 2)/2).

(14)

Now replacing the first Gegenbauer polynomial in (11) with the help of (13) we realize that
the integral (11) represents in essence a 3j -symbol of the groupSO(2m + n), cf (21)1:

Gn(j1, j2, j3, m) =
√
π 0(m + (n− 1)/2)

0(m + n/2) [(2m + n− 3)!] 3

min{m,[j1/2]}∑
k=0

(−1)k b(n, j1, k,m)

× (j1− 2k + 2m + n− 3)! (j2 +m + n− 3)! (j3 +m + n− 3)!

(j1− 2k)! (j2 −m)! (j3−m)!

×
(
j1− 2k j2 −m j3−m

0 0 0

)2

(n+2m)

. (15)

Thus we have succeeded in expressing the integral (11) by a single finite sum and in turn found
a rather simple expression for the integral (1) in terms of four finite sums and 3j -symbols of
SO(2m + n) with m = 0, 1, . . . ,min{`4, `5, `6}. Expression (10) together with (6), (14) and
(15) thus provides us with an elementary formula forIn(`1, `2, `3|`4, `5, `6), which is fairly
simple and can easily be evaluated using, for example, some computer-algebra program like
Mathematica†. We also note that in our result gamma functions with a half-integer argument
always occur in terms of a quotient and thereforeIn is, for given integer̀ ’s andn, a rational
number.

3. Discussion

In this section we will briefly discuss the symmetry properties ofIn(`1, `2, `3|`4, `5, `6), the
corresponding 6j -symbol and its relation to the result of Ališauskas [3]. First we note that the

† A Mathematicapackage, which implements the results of this paper can be obtained from the authors at
http://theorie1.physik.uni-erlangen.de/hormess.
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Table 1. Explicit expressions for the non-vanishing integralsIn(`1, `2, `3|`4, `5, `6) defined in (1)
and the corresponding quantityc(α)`1`2`3`4`5`6

defined in (17).

(`1`2`3`4`5`6) In(`1, `2, `3|`4, `5, `6) c
(α)
`1`2`3`4`5`6

(1 1 2 1 1 2)
4(n− 2)

(n− 1)n3(n + 2)3
(n− 2)(n− 1)n

n + 2

(1 1 2 1 3 2)
24

(n− 1)2n(n + 2)3(n + 4)

(n− 1)n3

n + 2

(1 1 2 2 2 1)
8(n− 2)

(n− 1)2n2(n + 2)3
(n− 2)(n− 1)n

(1 1 2 2 2 3)
48(n− 2)

(n− 1)3n(n + 2)3(n + 4)2
(n− 2)(n− 1)n2

n + 4

(1 1 2 2 4 3)
288

(n− 1)3n(n + 2)2(n + 4)2(n + 6)

(n− 1)n3(n + 1)

2(n + 4)

(1 1 2 3 3 2)
72(n− 2)(n + 1)

(n− 1)3n2(n + 2)3(n + 4)2
(n− 2)(n− 1)n2(n + 1)

2(n + 2)

(1 1 2 3 3 4)
864(n− 2)

(n− 1)3n3(n + 2)(n + 4)2(n + 6)2
(n− 2)(n− 1)n2(n + 1)

2(n + 6)

(1 1 2 4 4 3)
1152(n− 2)

(n− 1)3n3(n + 1)(n + 4)2(n + 6)2
(n− 2)(n− 1)n2(n + 1)(n + 2)

6(n + 4)

(1 2 3 1 2 3)
72(n− 2)

(n− 1)3n(n + 2)3(n + 4)3
(n− 2)(n− 1)n3

2(n + 2)(n + 4)

(1 2 3 1 4 3)
864

(n− 1)3n2(n + 2)(n + 4)3(n + 6)

(n− 1)n3(n + 1)

2(n + 4)

(1 2 3 2 3 2)
288(n− 2)(n + 1)

(n− 1)4n(n + 2)3(n + 4)3
(n− 2)(n− 1)n2(n + 1)

n + 4

(1 2 3 2 3 4)
1728(n− 2)

(n− 1)4n(n + 2)2(n + 4)3(n + 6)2
(n− 2)(n− 1)n3(n + 1)

2(n + 4)(n + 6)

(1 2 3 3 2 3)
864(n− 2)(n + 1)

(n− 1)4n(n + 2)3(n + 4)3(n + 6)

(n− 2)(n− 1)n3(n + 1)

(n + 2)(n + 6)

(1 2 3 3 4 3)
5184(n− 2)

(n− 1)4n2(n + 2)(n + 4)3(n + 6)2
(n− 2)(n− 1)n3(n + 1)

2(n + 6)

(1 2 3 4 3 2)
864(n− 2)

(n− 1)4n(n + 2)2(n + 4)3(n + 6)

(n− 2)(n− 1)n3(n + 1)

4(n + 4)

(1 2 3 4 3 4)
20736(n− 2)

(n− 1)4n2(n + 1)(n + 4)3(n + 6)2(n + 8)

(n− 2)(n− 1)n3(n + 1)(n + 2)

2(n + 4)(n + 8)

(1 3 4 1 3 4)
3456(n− 2)

(n− 1)3n3(n + 1)(n + 4)3(n + 6)3
(n− 2)(n− 1)n3(n + 1)

6(n + 4)(n + 6)

(1 3 4 2 4 3)
20 736(n− 2)(n + 2)

(n− 1)4n3(n + 1)(n + 4)3(n + 6)3
(n− 2)(n− 1)n2(n + 1)(n + 2)2

2(n + 4)(n + 6)

(1 3 4 3 3 4)
62 208(n− 2)

(n− 1)4n2(n + 1)(n + 4)3(n + 6)3(n + 8)

(n− 2)(n− 1)n4(n + 1)

2(n + 6)(n + 8)

(1 3 4 4 4 3)
124 416(n− 2)(n + 3)

(n− 1)4n2(n + 1)2(n + 4)3(n + 6)3(n + 8)

(n− 2)(n− 1)n4(n + 1)(n + 3)

4(n + 4)(n + 8)

(2 2 2 2 2 2)
64(n− 2)(n2 + 4n− 24)

(n− 1)5(n + 2)3(n + 4)3
(n− 2)(n− 1)(n + 2)3(n2 + 4n− 24)

(n + 4)3

(2 2 2 2 2 4)
768(n− 2)n

(n− 1)5(n + 2)3(n + 4)3(n + 6)

(n− 2)(n− 1)n2(n + 1)(n + 2)2

(n + 4)3
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Table 1. Continued.

(`1`2`3`4`5`6) In(`1, `2, `3|`4, `5, `6)

(2 2 2 2 4 4)
4608(n− 2)

(n− 1)5(n + 1)(n + 2)(n + 4)3(n + 6)2

(2 2 2 3 3 3)
864(n− 2)(n + 1)(n3 + 8n2 − 28n− 48)

(n− 1)5n2(n + 2)3(n + 4)3(n + 6)2

(2 2 2 4 4 4)
18 432(n− 2)(n3 + 12n2 − 24n− 128)

(n− 1)5n2(n + 1)2(n + 4)3(n + 6)2(n + 8)2

(2 2 4 2 2 4)
2304(n− 2)n2

(n− 1)5(n + 1)(n + 2)3(n + 4)3(n + 6)3

(2 2 4 2 4 4)
55 296(n− 2)

(n− 1)5(n + 1)2(n + 4)3(n + 6)3(n + 8)

(2 2 4 3 3 3)
20 736(n− 2)

(n− 1)5(n + 2)2(n + 4)3(n + 6)3

(2 2 4 4 4 2)
13 824(n− 2)n(n + 3)

(n− 1)5(n + 1)2(n + 2)2(n + 4)3(n + 6)3

(2 2 4 4 4 4)
663 552(n− 2)(n + 3)

(n− 1)5(n + 1)3(n + 4)3(n + 6)3(n + 8)2

(2 3 3 2 3 3)
2592(n− 2)(n + 1)(2n4 + 17n3 − 14n2 − 84n− 72)

(n− 1)5n3(n + 2)3(n + 4)3(n + 6)3

(2 3 3 3 4 4)
124 416(n− 2)(n3 + 10n2 − 20n− 48)

(n− 1)5n3(n + 1)(n + 4)3(n + 6)3(n + 8)2

(2 3 3 4 3 3)
15 552(n− 2)(n3 + 11n2 − 48n− 36)

(n− 1)5n3(n + 2)(n + 4)3(n + 6)3(n + 8)

(2 4 4 2 4 4)
221 184(n− 2)(n + 2)(3n4 + 40n3 + 72n2 − 192n− 512)

(n− 1)5n3(n + 1)3(n + 4)3(n + 6)3(n + 8)3

(2 4 4 4 4 4)
3 981 312(n− 2)(n + 2)(n + 3)(n3 + 14n2 − 16n− 128)

(n− 1)5n2(n + 1)4(n + 4)3(n + 6)3(n + 8)3(n + 10)

(3 3 4 3 3 4)
186 624(n− 2)(4n2 + 37n− 50)

(n− 1)5n2(n + 1)(n + 4)3(n + 6)3(n + 8)3

(3 3 4 4 4 3)
373 248(n− 4)(n− 2)(n + 3)(n + 20)

(n− 1)5n2(n + 1)2(n + 4)3(n + 6)3(n + 8)3

(4 4 4 4 4 4)
11 943 936(n− 2)(n + 3)(n6 + 43n5 + 400n4 − 212n3 − 6752n2 − 5888n + 15 360)

(n− 1)5n2(n + 1)5(n + 4)3(n + 6)3(n + 8)3(n + 10)3

3j -symbol (3) is obviously invariant under any permutation of the`’s. In addition, we note
that because of the first 3j -symbol appearing on the right-hand side of (2), the phase factor
in front of it may be replaced by(−1)`1+`2+`3+`4+`5+`6 as`1 + `2 + `3 is required to be an even
integer. As a consequenceIn(`1, `2, `3|`4, `5, `6) and the 6j -symbol have identical symmetry
properties. Using the invariance property of the Haar measure in (1) one easily verifies that{
`1 `2 `3

`4 `5 `6

}
(n)

=
{
`2 `3 `1

`5 `6 `4

}
(n)

=
{
`3 `1 `2

`6 `4 `5

}
(n)

=
{
`2 `1 `3

`5 `4 `6

}
(n)

=
{
`1 `3 `2

`4 `6 `5

}
(n)

=
{
`3 `2 `1

`6 `5 `4

}
(n)

=
{
`1 `5 `6

`4 `2 `3

}
(n)

. (16)

These are indeed the well known [11] symmetries of the 6j -symbols for the groupSO(3),
which are thus shown to be valid for alln > 3 if class-one representations are considered
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Table 1. Continued.

(`1`2`3`4`5`6) c
(α)
`1`2`3`4`5`6

(2 2 2 2 4 4)
(n− 2)(n− 1)n2(n + 1)(n + 2)3

2(n + 4)3

(2 2 2 3 3 3)
(n− 2)(n− 1)n(n + 1)(n3 + 8n2 − 28n− 48)

2(n + 6)2

(2 2 2 4 4 4)
(n− 2)(n− 1)n(n + 1)(n + 2)3(n + 6)(n3 + 12n2 − 24n− 128)

6(n + 4)3(n + 8)2

(2 2 4 2 2 4)
(n− 2)(n− 1)n4(n + 1)(n + 2)

4(n + 4)3(n + 6)

(2 2 4 2 4 4)
(n− 2)(n− 1)n3(n + 1)(n + 2)3

2(n + 4)3(n + 8)

(2 2 4 3 3 3)
(n− 2)(n− 1)n4(n + 1)

(n + 6)2

(2 2 4 4 4 2)
(n− 2)(n− 1)n4(n + 1)(n + 2)(n + 3)

8(n + 4)3

(2 2 4 4 4 4)
(n− 2)(n− 1)n4(n + 1)(n + 2)2(n + 3)(n + 6)

2(n + 4)3(n + 8)2

(2 3 3 2 3 3)
(n− 2)(n− 1)n(n + 1)(n + 4)(2n4 + 17n3 − 14n2 − 84n− 72)

2(n + 2)(n + 6)3

(2 3 3 3 4 4)
(n− 2)(n− 1)n2(n + 1)(n + 2)(n3 + 10n2 − 20n− 48)

2(n + 6)(n + 8)2

(2 3 3 4 3 3)
(n− 2)(n− 1)n2(n + 1)(n + 4)(n3 + 11n2 − 48n− 36)

4(n + 6)2(n + 8)

(2 4 4 2 4 4)
(n− 2)(n− 1)n(n + 1)(n + 2)3(n + 6)(3n4 + 40n3 + 72n2 − 192n− 512)

6(n + 4)3(n + 8)3

(2 4 4 4 4 4)
(n− 2)(n− 1)n3(n + 1)(n + 2)2(n + 3)(n + 6)2(n3 + 14n2 − 16n− 128)

4(n + 4)3(n + 8)3(n + 10)

(3 3 4 3 3 4)
(n− 2)(n− 1)n4(n + 1)(n + 4)(4n2 + 37n− 50)

4(n + 6)(n + 8)3

(3 3 4 4 4 3)
(n− 4)(n− 2)(n− 1)n4(n + 1)(n + 3)(n + 20)

8(n + 8)3

(4 4 4 4 4 4)
(n− 2)(n− 1)n4(n + 1)(n + 3)(n + 6)3(n6 + 43n5 + 400n4 − 212n3 − 6752n2 − 5888n + 15 360)

16(n + 4)3(n + 8)3(n + 10)3

only. The additional Regge symmetry [12] known for the casen = 3 cannot be verified by
these methods and thus it is not clear whether it holds for arbitraryn > 3. In combination
with these symmetry properties table 1 presents for all`i ∈ {1, 2, 3, 4} explicit values for
In(`1, `2, `3|`4, `5, `6) and

c
(α)
`1`2`3`4`5`6

:= d`1 d`2 d`3 d`4 d`5 d`6 In(`1, `2, `3|`4, `5, `6) (17)

whered` := (2`+n−2)(`+n−3)!/[`!(n−2)!] denotes the dimension of the`th representation.
Note that the quantity (17) is the actual contribution of theα-topology to the high-temperature
expansion ofSO(n)-symmetric lattice models [5]. Thus with the tabulated quantities (17) one
can derive high-temperature expansions forSO(n)-symmetric lattice models to rather high
order in the inverse temperature. For example, with only a few of the tabulated values of (17)
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one can find all expansion coefficients up to order ten for the specific heat [13] of a mixed
isovector–isotensor model, which recently has attracted much attention [9, 14].

Finally, we would like to comment on the relation of our result with that of Ališauskas [3]
on the 6j -symbol. First we recall that with our explicit result (10) forIn we have, with the help
of (2), a similar representation for the 6j -symbol, at least for those cases where the additional
3j -symbols appearing on the right-hand side of (2) do not vanish. Here the result has been
derived via explicit group integration, whereas Ališauskas [3] uses a series representation of
the 6j -symbol in terms of isoscalar factors. Indeed, this representation (equation (5.1) in [3])
is very much similar in form to our result (10) forIn. Note that the quantityGn defined in
(11) is, in fact, closely related to an isoscalar factor ofSO(n), cf (41)1–(44)1. In addition
to that, Alǐsauskas [3] was also able to show that these isoscalars may be expressed in terms
of (generalized) 6j -coefficients ofSU(2) which further allowed him to simplify his series
representation to three finite sums, see (5.7) in [3] which is valid forn > 5. In contrast to
this, we have considered not the 6j -symbol itself but the group integralIn and represented it
by four finite sums. As long as the involved representation labels` are small enough, which is
actually the case for a high-temperature expansion, this does not cause any disadvantage. The
advantage of consideringIn(`1, `2, `3|`4, `5, `6), respectively,c(α)`1`2`3`4`5`6

, is that the resulting
expressions (see table 1) are valid for alln > 2 and thus allow for a general discussion of
the high-temperature expansion ofSO(n)-symmetric lattice models including the important
XY -model (n = 2) and Heisenberg model (n = 3).
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